Impaired Electrical Signaling Disrupts Gamma Frequency Oscillations in Connexin 36-Deficient Mice
نویسندگان
چکیده
Neural processing occurs in parallel in distant cortical areas even for simple perceptual tasks. Associated cognitive binding is believed to occur through the interareal synchronization of rhythmic activity in the gamma (30-80 Hz) range. Such oscillations arise as an emergent property of the neuronal network and require conventional chemical neurotransmission. To test the potential role of gap junction-mediated electrical signaling in this network property, we generated mice lacking connexin 36, the major neuronal connexin. Here we show that the loss of this protein disrupts gamma frequency network oscillations in vitro but leaves high frequency (150 Hz) rhythms, which may involve gap junctions between principal cells (Schmitz et al., 2001), unaffected. Thus, specific connexins differentially deployed throughout cortical networks are likely to regulate different functional aspects of neuronal information processing in the mature brain.
منابع مشابه
Selective impairment of hippocampal gamma oscillations in connexin-36 knock-out mouse in vivo.
The physiological roles of neuronal gap junctions in the intact brain are not known. The recent generation of the connexin-36 knock-out (Cx36 KO) mouse has offered a unique opportunity to examine this problem. Recent in vitro recordings in Cx36 KO mice suggested that Cx36 gap junction contributes to various oscillatory patterns in the theta (approximately 5-10 Hz) and gamma (approximately 30-80...
متن کاملCellular circadian oscillators in the suprachiasmatic nucleus remain coupled in the absence of connexin-36.
In mammals, the master circadian clock resides in the suprachiasmatic nucleus (SCN). The SCN is characterized by robust circadian oscillations of clock gene expression and neuronal firing. The synchronization of circadian oscillations among individual cells in the SCN is attributed to intercellular coupling. Previous studies have shown that gap junctions, specifically those composed of connexin...
متن کاملSharp wave-like activity in the hippocampus in vitro in mice lacking the gap junction protein connexin 36.
Bath application of kainate (100-300 nM) induced a persistent gamma-frequency (30-80 Hz) oscillation that could be recorded in stratum radiatum of the CA3 region in vitro. We have previously described that in knockout mice lacking the gap junction protein connexin 36 (Cx36KO), gamma-frequency oscillations are reduced but still present. We now demonstrate that in the Cx36KO mice, but not in wild...
متن کاملEffects of electrically coupled inhibitory networks on local neuronal responses to intracortical microstimulation.
Using in vivo multielectrode electrophysiology in mice, we investigated the underpinnings of a local, long-lasting firing rate suppression evoked by intracortical microstimulation. Synaptic inhibition contributes to this suppression as it was reduced by pharmacological blockade of gamma-aminobutyric acid type B (GABAB) receptors. Blockade of GABAB receptors also abolished the known sublinear ad...
متن کاملContrasting roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of neuronal network oscillations.
Electrical coupling between pyramidal cell axons, and between interneuron dendrites, have both been described in the hippocampus. What are the functional roles of the two types of coupling? Interneuron gap junctions enhance synchrony of gamma oscillations (25-70 Hz) in isolated interneuron networks and also in networks containing both interneurons and principal cells, as shown in mice with a kn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 31 شماره
صفحات -
تاریخ انتشار 2001